
Programming Fundamentals 2

Pierre Talbot

16 February 2021

University of Luxembourg



Chapter 0. Getting Started

0



What is it?

This class will be about programming in Java.

Some aspects of this class are experimental.

• No distinction between lectures and labs.

• Intensive first half: 70% of your grade in 2 months.

• Feedback on what you produce (quick grading, code review, ...).

• Standard and competitive tracks.

Don’t hesitate to help us to improve this class!

1



Organization

FULL REMOTE: Every Tuesday and Thursday, 8:00 to 9:30.

There is no difference between lectures and labs!

Class layout:

1. Chapters: The core notions of Java are divided into 15 chapters.

2. Live coding: You watch me coding something.

3. Code analysis: We look at your projects and review them.

4. Crafting: Learn how to use your tools!

Ezhilmathi Krishnasamy (aka. Mathi) is the TA of this class, he will take

a good look at your code and discuss it during code analysis session.

2



Planning

Two tracks: standard track and competitive track.

Standard track

• 16/02–15/04: 4 labs, 1 every two weeks (40% of your grade).

• 15/04 (14:00–17:00): Exam (30% of your grade).

• 15/04–16/05 (labs 5 and 6): You will fight in the A.I. Arena (30%

of your grade).

• Beware: coding exam plus oral exam for redoing students (100%).

3



Labs

Three parts: basic exercises + main topic + competitive exercises.

• Lab 1: Connect Four

• Lab 2: Pokedeck

• Lab 3: ?

• Lab 4: Musical Improvisation

4



A.I. Arena

The remaining 30% will be gained by designing an artificial intelligence

for a simplified version of a MOBA-like game.

You’ll compete against each other for the throne!

5



Competitive track

• Track unlocked after you complete the standard track.

• Selected competitive exercices.

• You collect additional points.

• Special events: Hash code, Google Code Jam, ... (bonus points).

Competitive team

If you are interested, we can set up a team for ACM-ICPC in 1 or 2

years (need more or less preparation depending on your goal).

6



Competitive track

Coding competitions are very fun, and you learn a lot of new algorithms!

7



Competitive track planning

• 16th February → 15th April: Some UVa problems for each lab.

• Team Event 1: Hash Code: 25th February, 18:30

https://hashcodejudge.withgoogle.com

• Event 2: Google Code Jam Qualification: 26th March, 23:00 to

28th March, 01:00

https://codingcompetitions.withgoogle.com/codejam

• Event 3: Google Code Jam Round 1A: 10th April, 02:00–04:30

• Event 4: Google Code Jam Round 1B: 25th April, 17:00–19:30

• Event 5: Google Code Jam Round 1C: 1st May, 10:00–12:30

• Event 6: Google Code Jam Round 2: 15th May, 15:00–17:30

Those interested in the competitive track must register here (you can join anytime):

https://docs.google.com/spreadsheets/d/

1KMZx58SoE08g-l4usphtaLFnPhKzBDhTpa9PgixOok8/edit?usp=sharing.

8

https://hashcodejudge.withgoogle.com
https://codingcompetitions.withgoogle.com/codejam
https://docs.google.com/spreadsheets/d/1KMZx58SoE08g-l4usphtaLFnPhKzBDhTpa9PgixOok8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1KMZx58SoE08g-l4usphtaLFnPhKzBDhTpa9PgixOok8/edit?usp=sharing


What will you gain?

• Improve your programming craft, and code beautifully.

• Learn the basics of Java.

• Learn the basics of object-oriented programming.

• Feel more confident in the code you write.

• Develop your first 500-1K LOC programs.

9



Your coder toolbox

As a future professional software programmer, you need a decent (virtual)

equipment! Here a list of what you need (for this class):

• Shell: Linux-compatible bash shell (aka. console or terminal)

• Editor: Sublime Text (https://www.sublimetext.com/3)

• Java compiler/runtime: java and javac commands

Get Open Java Development Kit (Open JDK) (https://www.

oracle.com/java/technologies/javase-downloads.html)

• Source code control: Git with git command.

Also Github (https://github.com) as a collaboration platform

built on top of git.

• Build automation tool: Maven with mvn command.

• Communication: Discord app.

No IDE for now. You must use Sublime text. IDEs are quite complicated

and you don’t know what’s going on. We’ll use one later.

10

https://www.sublimetext.com/3
https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase-downloads.html
https://github.com


Getting started

Depending on your system, the ways to install the tools are a bit different.

Please, follow these videos according to your operating system (password:

Programm1ng):

• Linux (Ubuntu):

https://unilu.webex.com/unilu/ldr.php?RCID=63896a9159d2a523118c1f724251cd0f

• Mac OSX:

https://unilu.webex.com/unilu/ldr.php?RCID=8caf3ec8a59b40fd5721e74142c27e5c

• Windows:

https://unilu.webex.com/unilu/ldr.php?RCID=5e77758fb1d61a90dca84802062d5fd0

Try out as soon as possible Exercise 1 of Lab 1.

You CANNOT stay stuck at this stage.

Ask on Discord for any problem.

11

https://unilu.webex.com/unilu/ldr.php?RCID=63896a9159d2a523118c1f724251cd0f
https://unilu.webex.com/unilu/ldr.php?RCID=8caf3ec8a59b40fd5721e74142c27e5c
https://unilu.webex.com/unilu/ldr.php?RCID=5e77758fb1d61a90dca84802062d5fd0


Getting help

Google to search for information (e.g., Java docs, Stackoverflow, . . . ).

Discord (https://discord.gg/SqarkmNQHe) will be the privileged

communication tool for questions.

Answer the questions of your peers, Mathi and I will answer too.

Here the different channels:

• #tools: for any installation trouble, e.g., you can’t run a Java program, and questions

relevant to tooling.

• #code: all questions relevant to the code (from labs or classes).

• #competition: for the competitive track (UVa problems) and events (Google Hash Code,

Code Jam).

By mail if your question is personal: pierre.talbot@uni.lu.

Do everything you can to find answers to your questions.

12

https://discord.gg/SqarkmNQHe


Resources

• The Small Programming Handbook: Cheat sheets on git, shell,

Java pitfalls, Java conventions,... Updated regularly on

https://www.overleaf.com/read/tqxpqfwbbccc

• Slides and recorded lectures, live coding and code analysis sessions.

• Tutorial on various topics inside the labs.

13

https://www.overleaf.com/read/tqxpqfwbbccc


References

General Programming

• Clean Code: A Handbook of Agile Software Craftsmanship, Robert C. Martin

• Agile Software Development, Principles, Patterns, and Practices, Robert C.

Martin

• Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma,

Richard Helm, Ralph Johnson, John Vlissides

• The Mythical Man-Month: Essays on Software Engineering, Frederick Brooks

Java

• Effective Java 3rd Edition, Joshua Bloch

• Core Java Volume I - Fundamentals, Eleventh Edition, Cay S. Horstmann

14


